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Introduction

Pure Gauge Lagrangian of SU(3) :

1 .0 .
‘CPG = —EF:VF:V — 1 —327-(-2 F:VF/jI/ )
=, 1
Fiv = SemnoFoo F2, = 0,A% — 0,A% + g FPAPAC

where :

0 3
/d4X@ FiFi = Qrop -

is the topological charge .



Discretization on the Lattice

Topological density and charge on lattice :
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Renormalization

The topological charge density must be corrected by a
renormalization factor introduced by the lattice cut-off at the
quantum level

qi(n) = a*Z,(g%)q(x) + 0(a°) .

Various methods to take care of Z; :
@ Cooling
@ Smearing
@ Wilson Flow

@ eccC...



Wilson Flow

The Wilson Flow equation :
Vu(x,7) = =2 [0x,uS(V(7))] Vulx,7)

Vi(x,0) = Uu(x)

It has some advantages for our purpose :

@ |ts process can be accurately controlled since associated to a
differential equation,

@ it can, in principle, be extended to any gauge group



Sign Problem

Since
Sy = ithop

is purely imaginary = SIGN PROBLEM .

Some progress have been made, on the Lattice, in studying the
phase diagram of the theory using :

@ analytical continuation from imaginary 6 (6 = 0g + i6)) ,
@ Reweightening , Taylor expansion,
o large N expansion .

The first two, however, are limited by the small value of 6 , the last
is affected from the corrections for N=3 .



Complex Langevin Dynamics

In principle Complex Langevin Dynamics is a method to access the
whole phase diagram .



Real Langevin Dynamics
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@ Stochastic process for x : d_); =~ + n(7)
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@ Averages are calculated along the Langevin trajectory :
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Fokker-Planck equation for probability distribution P(x) :
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real action — positive eigenvalues:  P(x) — e=()
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Convergence to the correct distribution



Complex Langevin Dynamics

The fields are complexified :

@ real scalar — complex scalar: X — x+ iy

dx 05(z) .
g _Re[?]zzx—iﬁy +n(7)
dy 05(z) .
ar = Mgy ey

@ gauge group elements: U e SU(N) — U e SL(N, C)
SL(3, C) is non-compact, UT # U™!, det(U)=1.

@ Analytical continuation of the observables must be consider

(0) = %/Prea/(x,y) O(x + iy) dxdy



@ The Fokker-Planck prob. P(x,y) is still real in the
complexified variables

— NO SIGN PROBLEM

However

@ Proof of convergence :

/dxdy P(x,y) O(x+1iy) = / dx e e O(x)

exist only if Py (x,y) decays fast enough.



Complex Langevin

In principle Complex Langevin Dynamics is a method to access the
whole phase diagram .

Very careful with the proofs of correctness.

@ Compactness of the distribution in the complex plane ,
@ agreement of CL with MC methods for 6, ,
@ smoothness of (O) going from 6, to 6r ,



Dynamics :
@ 1 Complex Langevin update + several Gauge Cooling steps .

o GC. is a gauge transformation that locally minimize the
Unitarity Norm UN(n) =3_, Tr(Uu(n)Ul(n)) ,
UeSL(3,C).

@ We use GC. to keep the distribution compact, as close as
possible to the SU(N) manifold .

Histogram of the distribution of (S) for 6, =2 :
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Test dynamics choosing 8 =i 6,

6,=20i 6,=-20i

G0 -9 8 7 -6 5 4 -3 2 1

(@Q)g,=20i = 7—4;93(5») (Q)o,=—20i = +4.95(4)

@ Use Complex Langevin evolution
@ NO unitarization

@ Gauge cooling to stabilize dynamics

@ without gc. : explores SL(3, C), and eventually breaks down .

— Test of approach
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Exploring Real 6

Preliminary Results for N = 6*

So far :
@ bare lattice parameter 6, , i.e. not renormalization ,
o the lattice version of FF contributes to the eq of motion

@ no renormalization of the topological operators



We look at the behaviour of the plaquette and the topological
charge going from 6, to 0.
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Smooth behaviour of both observables with 6



Behaviour of (Q:p) with 6

Z(6) = / D[A] &S €9 — exp[— VF(9)] ;

F(0) = Zﬁ F2k(0) 0% ;
- !

The distribution of (Qtop) With @ is thus is expected to have the

form :
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Deviation from linear behaviour of (Q)y at large 0 :
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Drop

of the lattice topological susceptibility x; for increasing

values of 3
12 : | ! : . :
L . p=58 i
- p=59
091 « B=61 4
A
G osl- _
2 ool ]
03 - o] ]
[ 7 o028 e
. | . | . | ooasf- q
o 10 20 30 B
6 B

The effect will be enhanced including the renormalization factor

Z(p)

19/21



Conclusipons and Outlooks

@ We have good control of the CL dynamics at 6 for values of
B high enough (8 = 5.8), i.e. satisfaction of the criteria for
correctness .

For what concerns the bare theory :

@ We showed agreement with some momenta of Qo calculated
independently at 6z and at 6,

@ We showed the expected behaviour of the xop with 3 .

Outlooks :

@ Find a way to measure the renormalized topological
observables in SL(3,C) .
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